class: center, middle, inverse, title-slide # Introduction to Geographical Information Systems ## Unit 655 ### Benjamin Nowak, VetAgro Sup ### May-June 2022 --- background-color: #e76f51 background-size: cover class: center, bottom, inverse # <span style='font-size:55px'> **What is GIS?** </span> ### A computer system to analyze and display spatial data<br> --- # Projection - A 3D spherical surface cannot be converted to a 2D map without distortions - *Such as trying to flatten the skin of an orange<br>(Picture: [Manson and Kernik](https://open.lib.umn.edu/mapping/chapter/3-scale-and-projections/))* <center><img src="fig/gis/goode.jpg" width=70%></img></center> - It is also necessary to reflect the relief of the Earth's surface --- # World projection .pull-left[ ####Mercator projection *Deformation increase with latitudes, with Greenland and Antarctica far bigger than reality* <center><img src="fig/gis/mercator.jfif" width=70%></img></center> ] .pull-right[ ####Waterman "butterfly" *One of the projection with the least distortion* <br><br> <center><img src="fig/gis/waterman.jfif" width=100%></img></center> ] <br> **Pictures:** [Wikipedia](https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection) --- # World projection - Comparison of Tissot's indicatrix of deformation .pull-left[ ####Mercator projection <center><img src="fig/gis/mercator_tissot.png" width=70%></img></center> ] .pull-right[ ####Waterman "butterfly" <center><img src="fig/gis/waterman_tissot.png" width=100%></img></center> ] </br></br> **Pictures:** [Wikipedia](https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection) --- # Local projection - Use of local projections to reduce distorsions <center><img src="fig/gis/local_noname.png" width=60%></img></center> --- # Local projection - Use of local projections to reduce distorsions <center><img src="fig/gis/local.png" width=65%></img></center> --- # Layers - With GIS, maps are made of a superposition of layers <center><img src="fig/gis/map_creation.gif" width=60%></img></center> --- # Some basics for map creation .pull-left[ <br> <center><img src="fig/gis/final_map.png" width=100%></img></center> ] .pull-right[ - Provide some context (municipalities borders, waterways...) - *You may use a small map to localize your study area at bigger scale* - Maps need legend, scale bar and north arrow - Add title, ideally with a comment - Do not forget to quote data source ] --- # Not (only) for pretty maps... - Several geoprocessing operations may be performed for a single layer or between layers <center><img src="fig/gis/app_gis.gif" width=60%></img></center> --- background-color: #e76f51 background-size: cover class: center, bottom, inverse # <span style='font-size:55px'> **Layers in GIS** </span> --- # Two main type of layers .pull-left[ #### Raster - Regular grid of cells<br/>or pixels - One or multiple values per cell <center><img src="fig/gis/raster.PNG" width=80%></img></center> ] --- # Examples of raster data - **Aerial photography:** Pixel values correspond to ground color <img src="fig/gis/aerial.PNG" width=100%></img> <center><i>Comparison of Lempdes (63) between today and 1950</i></center> <center><b>Source: </b><a href="https://remonterletemps.ign.fr/"> remonterletemps.ign.fr </a></center> --- # Examples of raster data - **Remote sensing:** Multispectral images .pull-left[ - Three outcomes for incoming solar radiation: absorption, reflection or transmission - For each wavelength, reflectance (R) is calculated as follows:<br> `$$R = \frac{\phi_r}{\phi_i}$$` ] .pull-right[ <img src="fig/gis/rad.png" width=100%></img> <center><b>Dynamics of the luminous flux incoming on a leaf</b></center> ] --- # Examples of raster data - **Remote sensing:** Multispectral images .pull-left[ - Several satellites provide reflectance data at 10 to 30m resolution, such as [Landsat](https://landsat.gsfc.nasa.gov/) or [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) - Each raster may be processed alone or combined as a vegetation index like the Normalized Difference Vegetation Index (NDVI) `$$NDVI = \frac{R_{NIR}-R_{Red}}{R_{NIR}+R_{Red}}$$` ] .pull-right[ <img src="fig/gis/NDVI.gif" width=100%></img> <center><b>Timelapse of NDVI evolution</b></center> ] --- # Examples of raster data - **Digital Elevation Model (DEM):** Elevation data .pull-left[ - A DEM is a raster of ground surface topography - *Each cell gives the average elevation at a given position* ] .pull-right[ <img src="fig/gis/elevation.png" width=100%></img> ] --- # Examples of raster data - **Digital Elevation Model (DEM):** Elevation data .pull-left[ - A DEM is a raster of ground surface topography - GIS can convert these data into raster of slope, exposure... - ***On the right:*** *Each cell gives the main exposure at a given position* ] .pull-right[ <img src="fig/gis/aspect.png" width=100%></img> ] --- # Formats of raster layers - Raster geographic files are like **image files** - Thus the format of a raster file is often that of an image file (.tif, .ecw, .jpg, .png...) - But, in addition to the image data, the rasters have **positioning information**, which can be stored in a separate file or in the same file in a GeoTIFF format (.tif or .tiff) --- # Two main type of layers .pull-left[ #### Raster - Regular grid of cells<br/>or pixels - One or multiple values per cell <center><img src="fig/gis/raster.PNG" width=80%></img></center> ] .pull-right[ #### Vector - Set of geometric shapes (points, lines or polygons) - With an attribute table describing each item <center><img src="fig/gis/vectors.PNG" width=80% style="border:#e76f51; border-width:3px; border-style:solid;"></img></center> ] --- # Examples of vector data - With vectors, the elementary spatial entities are not cells but geometric shapes: **points**, **lines** or **polygons** <center><img src="fig/gis/type.gif" width=60%></img></center> --- # Examples of vector data - Variables of different types (numerical, factorial, text...) can be stored in **the attribute table** to define each item - *One table per vector file, with one line per item* <center><img src="fig/gis/attribute.PNG" width=90%></img></center> --- # Examples of vector data - Vectors are useful to make **choropleth map**, in which spatial units are colored or shaded to indicate the mean values of an indicator .pull-left[ - First choropleth map: [Popular education in France](https://gallica.bnf.fr/ark:/12148/btv1b530830640) (Dupin, 1826) - ***Legend:*** *From 1 pupil per 10 inhabitants to 1 pupil per 268 inhabitants from lightest to darkest* ] .pull-right[ <img src="fig/gis/chloro.png" width=100%></img> ] --- # Examples of vector data - Choropleth maps are well suited to show statistical values by administrative entity <img src="fig/gis/cattle.png" width=100%></img> --- # Examples of vector data - The principal of choropleth maps may also be applied to point vectors - *To produce a yield map, the attribute table provides estimated weight, moisture, working width...* <center><img src="fig/gis/yield.png" width=60%></img></center> --- # Examples of vector data - With **a cartogram**, it is the size of the entities that is proportional to the mapped indicator <center><img src="fig/gis/cartogram.png" width=100%></img></center> --- # Formats of vector layers - There are several formats for vector files - *GeoJSON (.geojson, .json), GeoPackage (.gpkg), .kml and .kmz...* - The **shapefile** format is a popular vector data format developed and regulated by Esri - Each shapefile is composed of several files - *.shp, .shx, .dbf (table of attribute), .prj (optional file with CRS)...* - *All files must be stored in the same folder, with the same name* --- background-color: #e76f51 background-size: cover class: center, bottom, inverse # <span style='font-size:55px'> **Some examples<br>of GIS software** </span> --- # Specialized softwares .pull-left[ #### Free, open source <br> <center><img src="fig/gis/qgis.png" width=90%></img></center> ] .pull-right[ #### Commercial <center><img src="fig/gis/arcgis.png" width=70%></img></center> ] --- # Non-specialized softwares <center><img src="fig/gis/r_ex.PNG" width=100%></img></center> --- # Cloud-based softwares <center><img src="fig/gis/gee2.PNG" width=100%></img></center> --- background-color: #e76f51 background-size: cover class: center, bottom, inverse # <span style='font-size:55px'> **An example of GIS application** </span> ### Adoption of cover crops in France<br> --- # Goal of the study - Use of multispectral imagery to detect cover crops <center><img src="fig/gis/cover_pic.png" width=75%></img></center> Nowak *et al.* (2022) --- # Methodology - What is the best time to detect cover crops? <center><img src="fig/gis/cover_crop.PNG" width=100%></img></center> --- # Methodology - Border of the fields: Land Parcel Identification System of the Common Agricultural Policy - *Filter for spring crops only* <center><img src="fig/gis/rpg.PNG" width=80%></img></center> [**Picture:** Geoportail](https://www.geoportail.gouv.fr/) --- # Methodology - NDVI extraction based on [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) images with the [Google Earh Engine](https://earthengine.google.com/) <center><img src="fig/gis/data_extraction.PNG" width=100%></img></center> [Nowak *et al.* (2021)](https://iopscience.iop.org/article/10.1088/1748-9326/ac007c#:~:text=At%20country%20scale%2C%20winter%20soil,at%20least%2050%25%20of%20vegetation.) --- # Results - Map of the adoption of winter cover crops in France - *~ 40% of fields with cover crops before spring crops* <center><img src="fig/gis/cover_map.png" width=60%></img></center> [Nowak *et al.* (2022)](https://iopscience.iop.org/article/10.1088/1748-9326/ac007c#:~:text=At%20country%20scale%2C%20winter%20soil,at%20least%2050%25%20of%20vegetation.) --- # Results - Analysis of adoption by crop <center><img src="fig/gis/species.PNG" width=60%></img></center> [Nowak *et al.* (2022)](https://iopscience.iop.org/article/10.1088/1748-9326/ac007c#:~:text=At%20country%20scale%2C%20winter%20soil,at%20least%2050%25%20of%20vegetation.) --- # Data sources - Population of the Puy-de-Dôme (France) department: [Global Human Settlement Layer](https://ghsl.jrc.ec.europa.eu/), European Comission - Infrastructures: [BD TOPO](https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo), Institut national de l'information géographique et forestière (IGN) - Map visualization, with lot of different ressources available for France; [Géoportail](https://www.geoportail.gouv.fr/) --- # Useful resources - [Learn how to make cartogram with R](https://www.r-graph-gallery.com/cartogram.html), The R Graph Gallery - [Making maps with R](https://bjnnowak.github.io/Lessons/2nd_session_R#1), Benjamin Nowak - [Handling Digital Elevation Model with Google Earth Engine](https://bjnnowak.netlify.app/2021/09/27/gee-terrain-features/), Benjamin Nowak --- background-color: #264653 background-size: cover class: center, bottom, inverse ### <span style='color:white';>[Back to Summary](https://bjnnowak.github.io/gis/)</span>